

Recycling of mixed plastics and polymer blends: challenges and possibilities

Green Chemistry & White Biotechnology - (Bio-)Polymers and Ecocircularity: From Challenges to Opportunities

Technical and Scientific Textile Centre CENTEXBEL

Centexbel

Technical and Scientific Textile Centre

independent and objective advice, research and testing

the expertise of 180 highly educated collaborators

transsectorial and international networking

focus on sustainable development

practice-oriented support

partnership

an open approach

Functional thermoplastic textiles

•Meltprocessing of polymers in textiles and composites

Plastic processing • Material characterisation • Plastic processing technologies • Recycling

Textile functionalisation and surface modification

• Coating, finishing and surface modification for new and superior functional performances

Health, safety and security

 Textile products for health, safety and security purposes

ISO 17025 Accredited Laboratories

fire

physical

FR - properties flame propagation fumes smoke density ...

abrasion color fastness anti-static waterproof ...

chemical permeation heavy metals emission fibre identification ...

microbiological barrier properties

cleanroom

anti-microbial

cytotoxicity ...

Certification and Services

certification						
PPE						
Toys						
Carpet						
Coaches						
floor- and wall coverings						
textiles and harmful substances	CONFIDENCE					
sustainable production processes	IN TEXTILES Tested for harmful substances according to Oeko-Tex® Standard 100 000000000					
recycling	Centexber					
	GU S					

CARPETS TESTED FOR A BETTER

services consultancy training standardisation and legislation patent support publications - website brochures - social media - ... facebook Linked in.

PLASTICS IN A CIRCULAR ECONOMY

Plastics waste in Europe

Highest recycling rate for **plastic packaging** (39.5%)

→ Represented >80% of total recycled quantities

From linear to circular economy

LINEAR ECONOMY

RECYCLING ECONOMY CIRCULAR ECONOMY

SER PVK

Plastics recycling

- Emphasis on sustainable manufacturing
 - ecologically responsible use of raw materials
 - re-use of plastic waste
- Increasing demand for high quality recyclates
- →Pure post-industrial polymer waste recycling is already maximized

Case 1: polyester recycling

Reclaimed post-consumer packaging

- \rightarrow \uparrow high value, \uparrow availability, \checkmark cost, easy to recycle
- → R-PET from colourless bottle waste for textile app.s

Multifilament extrusion = feasible with

= processing parameters as v-PET≈ mechanical properties

Plastic recycling

Plastic waste = mix of different polymers

- Incompatible polymers: immiscible
 - inferior mechanical properties
 - not suited for high-quality products
- →UNRECYCLABLE ???

Multilayer sheet

Excellent food packaging

Multifilament

extrusion trials

- adaptation processing parameters
- only small bobbin
- with very low mechanical properties
- ➔no industrial relevance

Yarns

Unrecyclable? →Use of compatibilisers

With compatibiliser \rightarrow increase in tenacity, comparable to virgin PET

Case 2: PET-PE packaging Tape extrusion trials

compatibilizer:

- Easier processing
- Smoother tapes
- ↑ Draw ratio
- ↑ Strength

With compatibiliser → increase in tenacity

100% PET/PE + 10% comp 01 + 10% comp02

x500

Case 3: PP-PET carpet waste

Sample	MFR _{mean} [g/10']
PP-PET waste	195,46
PP-PET waste + 10% comp	53,05
5mm	Compatibilisation

Case 4: PP-PET post-consumer

PCB

Compatibilisation

- \checkmark Young's modulus
- ↑ Strength,
- ↑ ↑ Elongation

Material	Et (Mpa)	σ _{max} (Mpa)	ε _{max} (%)	σ _в (Mpa)	ε _в (%)
Post-consumer blend	1568 ± 15	21 ± 0	3 ± 0	19 ± 0	9 ± 2
PCB + comp-019	1251 ± 16	23 ± 0	7 ± 0	22 ± 1	11 ± 2
PCB + comp-001	1550 ± 8	24 ± 0	3 ± 0	22 ± 0	6 ± 1
PCB + comp-008	1395 ± 7	25 ± 0	6 ± 0	24 ± 1	10 ± 1
PCB + comp-012	1281 ± 15	24 ± 0	7 ± 0	23 ± 1	10 ± 1

Case 5: Textile reinforcement

Short fibre reinforced composites

Coupling

agent

Synthetic fibres recovered From post-producer Bulky waste

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 690103

- Post-industrial natural agent fibre
 - ↑ Stiffness
 - Influence of fibre type
 - + Compatibilizer
 - → ↑ Strength

Make the impossible possible CONCLUSIONS

Conclusions

 Recovery & recycling of mixed polymers = limited, yet there are solutions

- Challenges

- Collection & sorting
- Consolidation of streams to reach critical volumes of consistent quality
- Variety of materials (not all plastics)
- Application development
- REACH compliancy

Questions? → Come visit our booth!

Contact details Birgit Stubbe, PhD birgit.stubbe@centexbel.be Tel +32 9 243 46 90

